The System Identification and Control of a Microgripper System
           

- 指導教授 黃漢邦 博士 研究生 廖家彬

- Advisor :Dr.Han-Pang Huang Student :Jia-Bin Liao

Lab. of Robotics., Department of Mechanical Engineering National Taiwan University Taiwan

Abstract:

The main objective of this thesis is to utilize the self-sensing characteristic of a piezo-microgripper to achieve position control and force estimation.


The static model using Euler-Bernoulli method is derived. The maximum displacement and accessible force about z direction can be calculated. The dynamic model based on the Euler-Bernoulli model presents a precise description of the dynamic behavior of the system. This model consists of actuator and sensor equations.


Then, the methods of system identification are utilized to obtain the practical model of the microgripper. The hysteresis model will be established firstly, and a feedforward controller will be used to compensate the hysteresis effect with the Preisach model. And then, the open loop dynamic model and self-sensing model of the microgripper will be identified. The strain self-sensing method was built as the sensor to measure the deflection of the microgripper without using an external sensor. According to these models, the hybrid controller is designed to achieve position control and force estimation.


Finally, the microgripper is integrated into the three-degree-of-freedom micromanipulator to form a micromanipulation system.



中文摘要:  

本文利用一壓電微夾爪對壓電材料進行系統識別取得物理模型,並利用此模型結合自感測特性進行混合控制,以達到微米精度之需求。


理論部分,靜態模型藉由Euler-Bernoulli Model,求得微夾爪之最大位移與最大出力。動態模型則包含致動與感測方程式二者可獲得輸入電壓與輸出位移之關係。


控制部份分成靜態補償與動態補償兩個部份,首先利用Preisach理論建構壓電致動器之遲滯現象模型,再經由前饋控制補償遲滯現象。再利用動態模型並對 照系統識別之動態模型設計CMAC結合前饋控制之混合型控制器以達到微米精度之控制。其中因微夾爪之前端非常細小,故採用壓電致動器之自感測原理作為感測 器,將量得訊號作回授控制,並結合CMAC類小腦控制之混合控制。


最後,將此微夾爪整合於四軸微操作器上形成一微操作系統,並實際進行微操作與微組裝之實驗,達到微組裝工廠之目標。